

UNIVERSITY OF CHEMISTRY AND TECHNOLOGY, PRAGUE Faculty of Food and Biochemical Technology Department of Food Analysis and Nutrition

Current challenges in pesticide residue analysis

Jana Hajslova, Leos Uttl, Dana Schusterova, Michal Stupak, Monika Tomaniova

China International Food Safety & Quality Conference

October 27 - 28, 2021 JW Marriott Hotel Beijing Central

Hazard notifications by world regions

Rapid alert system for food and feed (RASFF)

https://ec.europa.eu/food/ani mals/movement-pets/eulegislation_en

• The Rapid Alert System for Food and Feed

Annual Report 2020

2020 top 10 hazard and product categories on food products originating from member countries

2020 top 10 hazard and product categories on food products originating from nonmember countries

Pesticide residues notified in 2020, set out against food product category on food products originating from member countries

Ethylene oxide: an emerged contaminant

MAY DAMAGE FERTILITY OR THE UNBORN CHILD RESPIRATORY PROTECTION AND PROTECTIVE CLOTHING MAY BE REQUIRED IN THIS AREA AUTHORIZED PERSONNEL ONLY

Ethylene oxide

- Ethylene oxide is a gaseous disinfectant banned in EU since 1991
- It is classified as a category 1 carcinogen by the International Agency Research of Cancer (IARC)
- Contamination of seeds, spices, food additives, milk products, breads...
- During storage, ethylene oxide reacts with chloride ions yielding 2-chloroethanol.

MLR definition: Ethylene oxide (sum of ethylene oxide and 2-chloro-ethanol expressed as ethylene oxide)

690 NOTIFICATIONS

08/2020 - 010/2021

Ref. 4	Category \downarrow	Type \downarrow	Subject $ ightarrow$	Date \downarrow	Country \downarrow	Class. \downarrow	Decision
2021.5785	Dietetic foods, food	food	Ethylene oxide in ginger extract used in food supplements from Finland	26 OCT 2021	📕 Lithuania	information notification for follow-up	undecided
2021.5728	Food additives and flavourings	food	Unauthorized substance ethylene oxide (& 2-chloroethanol) in xanthan gum from China	22 OCT 2021	Germany	information notification for follow-up	undecided
2021.5710	Cereals and bakery products	food	Ethylene oxide in bread	22 OCT 2021	Luxembourg	alert notification	serious
2021.5674	Prepared dishes and snacks	food	Presence of ethylene oxide in frozen chips made from xanthan gum	20 OCT 2021	France	alert notification	serious
2021.5654	Herbs and spices	food	Óxido de etileno, semilla de sésamo, India // Ethylene oxide, sesame seed, India	20 OCT 2021	Spain	border rejection notification	serious
2021.5622	Food additives and flavourings	food	Ethylene Oxide in Calcium Carbonate	19 OCT 2021	Italy	alert notification	serious
2021.5614	Prepared dishes and	food	Ethylene oxide in fried snack with sesame	18 OCT 2021	• Switzerland	alert notification	serious

Implementation of GC-MS/MS method

Analysis of total EtO – conversion of EtO to 2CE by acid hydrolysis + NaCl followed by ethylacetate extraction and dSPE clean-up

Screening 2-CE (contamination marker) – extraction by aqueous acenitrile followed by dSPE clean-up

GC-MS/MS analysis

Sample

Analysis of ethylene oxide and 2-chloroethanol

- Performance characteristics of the analytical methods
 - Recovery 73-99% (EtO) and 86-119% (2CE)
 - Repeatability (RSD) 2-20%
 - LOQ 0.01 mg/kg (2CE) and 0.02 mg/kg (EtO)
 - Accuracy was proven through analysis of EUPT-SRM16 sesame seeds

Chromatographic records (GC-MS/MS)

- <u>A</u> EUPT-SRM 16-2021 (sesame seeds, 2CE=5.07 mg/kg)
 - <u>B</u> ground pepper (2CE=0.02 mg/kg)

11

Analysis of EtO and CE

- Performance characteristics of the analytical method
 - Recovery 73-99% (EtO) and 86-119% (2CE)
 - Repeatability (RSD) 2-20%
 - LOQ 0.01 mg/kg (2CE) and 0.02 mg/kg (EtO)
 - Accurancy was proven through analysis of EUPT-SRM16 sesame seeds

Chromatographic records (GC-MS/MS)

solutions for separation scientists

September 2021 Volume 34 Number 9 www.chromatographyonline.com

- <u>A</u> EUPT-SRM 16-2021 (sesame seeds, 2CE=5.07 mg/kg)
 - <u>B</u> ground pepper (2CE=0.02 mg/kg)

Analysi

Performance of the second s

- Recovery -
- Repeatabili
- LOQ 0.01
- Accurancy

Gas Chromatography Tandem Mass Spectrometry Analysis of Ethylene Oxide: An Emerged Contaminant in Seeds and Spices

Michal Stupák, Filatova Maria, Vladimír Kocourek, and Jana Hajšlová, University of Chemistry and Technology Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Prague, Czech Republic

The occurrence of the banned insecticide, ethylene oxide (EtO), and its transformation product, 2-chloroethanol (2-CE), has recently been reported in various food commodities. In this study, two alternative approaches based on gas chromatography coupled to tandem mass spectrometry (GC–MS/MS) were developed to control maximum residue limit (defined as the sum of ethylene oxide and 2-chloroethanol expressed as ethylene oxide). The first approach offered a rapid screening of 2-CE (the contamination marker) in an aqueous acetonitrile extract purified by dispersive solid-phase extraction (dSPE). The total EtO was determined by the second approach, which involved conversion of EtO to 2-CE by acid hydrolysis in the presence of chloride; the ethyl acetate extract was purified prior to instrumental analysis by dSPE. The achieved limit of quantification for EtO (the sum of EtO and 2-CE expressed as EtO) was low enough to ensure compliance with regulatory requirements. The accuracy of the results was successfully verified by analysis of the EUPT test material (EUPT-SRM16 - 2021).

LC GC e u r o p e solutions for separation scientists

solutions for separation scientists September 2021 | Volume 34 Number 9 www.chromatographyonline.com

ame seeds

STUPAK ET A

ic records (GC-MS/MS) 1 16-2021 (sesame .07 mg/kg) epper (2CE=0.02 mg/kg)

Stupak M., Filatova M., Kocourek V., Hajslova J.: *Gas Chromatography Tandem Mass Spectrometry Analysis of Ethylene Oxide: An Emerged Contaminant in Seeds and Spices*. LCGC (2021) Special Issues 34(s10): 5-10. (<u>on-line</u>)

References

- Sesame seeds. Photography. Britannica ImageQuest, Encyclopædia Britannica, 25 May 2016. <u>quest.eb.com/search/132_1250313/1/132_1250313/cite</u>. Accessed 25 Oct 2021.
- Freshly ground coarse black pepper in white paper. Photograph. Britannica ImageQuest, Encyclopædia Britannica, 25 May 2016. <u>quest.eb.com/search/118 810398/1/118 810398/cite</u>. Accessed 25 Oct 2021.
- Spoonful Of Sesame Seeds. Photography. Britannica ImageQuest, Encyclopædia Britannica, 25 May 2016. <u>quest.eb.com/search/156_2425086/1/156_2425086/cite</u>. Accessed 25 Oct 2021.
- www.Agilent.com

Current multi-residue methods

Methods for analysis of multiple residues

LC-MS/MS: 249

Ś

Abamectin, Acephate, Acetamiprid, Acetochlor, Acrinathrin, Alachlor, Aldicarb, Aldicarb-sulfone, Aldicarbsulfoxide, Ametryn, Atrazine, Azadirachtin, Azoxystrobin, Benalaxyl, Bendiocarb, Bitertanol, Boscalid, Bromoxynil, Carbaryl, Carbendazim, Carbofuran, Carbofuran-3-hydroxy, Chloroxuron, Chlorsulfuron, Cinerin, Clofentezine, Clomazone, Clothianidin, Cyanazine, Cyazofamid, Cymoxanil, Cyproconazole, Demeton-S-methyl, Demeton-S-methyl-sulfone, Desmedipham, Desmethylpirimicarb, Desmetryn, Dichlorvos, Dicrotophos, Diethofencarb, Diflubenzuron, Diflufenican, Dimethenamide, Dimethoate, Dimethomorph, Dimoxystrobin, Diniconazole, Disulfoton, Disulfotone-sulfone, Disulfotone-sulfoxid, Diuron, DMSA, DMST, Dodine, EPN, Epoxiconazole, Ethiofencarb, Ethofumesate, Etofenprox, Etrimfos, Fenamiphos, Fenamiphos-sulfon, Fenamiphos-sulfoxide, Fenazaguin, Fenbuconazole, Fenhexamid, Fenoxaprop-P, Fenpropathrin, Fenprophimorph, Fenpropidin, Fenpyroximate, Fensulfothion, Fenthion, Fipronil, Flonicamid, Fluazifop, Fluazifop-P-butyl, Fluazinam, Fludioxonyl, Flufacenate, Flufenacet, Flufenoxuron, Fluoxastrobin, Fluquinconazole, Fluroxypyr, Flusilazole, Formetanate, Formothion, Haloxyfop-acid, Hexaconazole, Hexazinon, Hexythiazox, Imazalil, Imazaquin, Imazethapyr, Imidacloprid, Indoxacarb, Iodosulfuron-methyl, Iprovalicarb, Isoproturon, Jasmolin, Lenacil, Linuron, Lufenuron, Mefenpyr-diethyl, Mepanipyrim, Neprobil, Metalaxyl, Metazachlor, Metconazole, Methamidophos, Methiocarbsulfone, Methiocarbsulfoxide, Methomyl, Methoxyfenozide, Metobromuron, Metolachlor Metolcarb, Metoxuron, Mevinphos, Monocrotophos, Monolinuron, Monuron, Myclobutanil, Naled, Napropamide, Neuron, Norflurazone, Omethoate, Oxadixyl, Oxamyl, Oxydemeton-methyl, Paclobutrazol, Pencycuron, Phenmedipham, Phorate, Phorate-sulfon, Phorate-sulfoxide, Phosphamidon, Picoxystrobin, Piperonylbutoxide, Pirimicarb, Prochloraz, Prometon, Prometryn, Propachlor, Propamocarb, Propaguizafop, Propiconazole, Propoxur, Propyzamide, Proguinazid, Prosulfocarb, Pyraclostrobin, Pyrethrin, Pyridate, Pyrifenox, Pyrimethanil, Pyriproxyfen, Quinmerac, Quinoxyfen, Quizalofop-P-ethy Resmethrin, Simazine, Simetryn, SpinosynA, SpinosynD, Spiroxamin, Tau-Fluvalinate, Tebufenozide, Tebufenpyrad, Teflubenzuron, Terbufos-sulfoxide, Terbuthylazine, Terbutryn, Thiabendazole, Thiaclopri Thiamethoxam, Thiodicarb, Thiometon, Thiophanate-methyl, Tolylfluanid, Triadimenol, Trichlorfon, ciflumuron, Triforine, Vamidothion.....

azinphos-ethyl, azinphos-methyl, bifenthrin, bupirimate, buprofezin, cadusafos, carbophenothion, hlorfenvinphos, chlorpropham, chlorpyrifos, chlorpyrifos-methyl, cyfluthrin, cyhaldthrin, cypermethrin, cyprodinil, deltamethrin, diazinon, dichlofluanid, diclofop-methyl, difenoconazole, ethion, ethoprophos, fenarimol, fenoxycarb, fonofos, haloxyfopethoxyethyl, haloxyfop-methyl, heptenophos, isofenphos, isofenphos-methyl, kresoxim-methyl, malaoxon, malathion, mecarbam, methacrifos, methidathion, methiocarb, oxyfluorfen penconazole, pendimethalin, permethrin, phenothrin, phenthofate , phosalone, phosmet, pirmiphos-ethyl, pirmiphos-methyl, profenofos, propargite, propham, pyrazophos, pyridaben, quinalphos, sulfotep, tebuconazole, terbufos, terbufos-sulfore, tetraconazole, tolclofos-methyl, triadimefon, triazophos, tifloxystrobis,

GC-MS: 105

bromophos-ethyl, bromophos-methyl, bromopropylate, chlorobenzilate, chlorothalonil, DDD (o, p'), DDD (p, p'), dicofol, dieldrin, diphenylamine, endosulfan (alpha), endosulfan (beta), endosulfan-sulfate, endrin, fenamidone, fenchlorphos, fenitrothion, fenthion, fenvalerate (1), fenvalerate (2), flucythrinate, fluvalinate, HCH (alpha) HCH (beta), HCH (delta), HCH (gamma), heptachlor-epoxide (endo), heptachlorepoxide (exo), iprodione, methoxychlor, nitrofen, parathion-ethyl, parathionmethyl, phenylphenol (o), procymidone, prothiofos, pyridaphenthion, quintozene , tecnazene , tefluthrin (cis) , tetradifon , trifluralin . vinclozolin

62 pesticides both LC and GC amenable

High resolution mass spectrometry challenges in pesticide residue analysis

HRMS can ► distinguish between compounds with the same nominal mass, ► determine elemental compositions, and ► identify unknowns

MS detector	r/Characteristics		Requirements for identification					
Resolution	Typical systems (examples)	Acquisition	minimum number of	other				
• • • •	: :		ions					
· · · · · · · · · · · · · · · · · · ·				S/N ≥ 3 ^d)				
Accurate mass measurement	High resolution MS: (Q-)TOF (Q-)Orbitrap FT-ICR-MS sector MS	full scan, limited m/z range, SIM, fragmentation with or without precursor-ion selection, or combinations thereof	2 ions with mass accuracy ≤ 5 ppm ^{a, b,} c)	Analyte peaks from precursor and/or product ion(s) in the extracted ion chromatograms must fully overlap.				
· · ·	· · ·			Ion ratio: see D12				

Orthogonal selectivity of HRMS

Multiresidue – multimatrix method developed and transferred

UHPLC-HRMS/MS method for multiple contaminants (mycotoxins + pesticides)

UNIVERSITY OF CHEMISTRY AND TECHNOLOGY, PRAGUE Facility of Food and Becomical Technology.		i.
	$\begin{bmatrix} RT & 0.00 - 1601 & SM & SG \\ 100 \\ 00 \\ 00 \\ 00 \\ 40 \\ 20 \end{bmatrix} = \begin{bmatrix} 2.08 & Carbendazim (XIC) \\ m/z & 192.0768 \\ \Delta m/z & 0.01 ppm \end{bmatrix}$	NL: 1.07E7 m/z= 192.0758-192.077 F: FTMS + p ESIFi ms (80.00-1200.00) MS VV_2155
Simultaneous determination of pesticide residues and mycotoxins using multi-detection LC-MS method	0 299 100 Aflatoxin B1 (XIC) 800 m/z 313.0707 40 Δ m/z - 2.8 ppm	NL: 1.10E6 m/z= 313.0691-313.072: F: FTMS + p ESIFi ms [80.00-1200.00] MS VV_2155
	Ochratoxin A (XIC) abge 60 m/z 404.0895 Δ m/z - 3.1 ppm	NL: 9.74E5 m/2= 404.0875-404.0915 F:FTNS + p ESIFi ms [80.00-1200.00 MS VV_2155
	^μ ¹⁰⁰ ⁶⁰⁰ ⁶⁰⁰ ⁴⁰⁰ ²⁰⁰ ²⁰⁰ ¹⁰⁰ ¹	NL: 2.72E7 m/z= 314.0707-314.0736 F:FTMS + p ESI Ft ms [80.00-1200.00] MS VV_2155
SOP code ILC-Multires-2021-SOP Version / date of issue 2 / 07-07-2021 Institute / Laboratory University of Chemistry and Technology / Testing Laboratory Approved by: J. Hajslova (UCT) Signature: James Bario S	6-19 Tebuconazole (XIC) <i>m/z</i> 308.1524 Δ <i>m/z</i> - 2.1 ppm	NL: 5.76E6 m/z= 008:1509-308:1535 F: FTMS + p ESI FL ms [80.00-1200.00] MS VV_2155
Institute: University of Chemistry and Technology Prague Department of Food Analysis and Nutrition Technicka 3/1903; 166 28 Prague 6, Cech Republic jana.hajslova@vscht.cz; https://uapv.vscht.cz/?jazyk-en	0	

Inter-Laboratory Comparison Study on Pesticide Residues in Food (ILC)

➡<u>The aim of ILC</u>: obtaining information regarding the quality, accuracy and comparability of pesticide residue data in food reported within the framework of EU and China laboratories implementing multidetection LC-MS method developed within the project.

Task for participants: to use the UPLC-HRMS multiresidue method developed by UCT Prague and described in Standard Operation Procedure (SOP) provided to Chinese partners for analysis of green tea sample contaminated by multiple pesticide residues

Inter-laboratory Comparison Study on Pesticide Residues in Food (ILC)

Participating laboratories:

- Academy of National Food and Strategic Reserves Administration, Institute of Cereals and Oils Quality and Safety (China)
- Beijing Center For Disease Control and Prevention, Central Lab (China)
- Chinese Academy of Inspection and Quarantine, Institute of Food Safety (China)
- China National Center for Food Safety Risk Assessment, Food Chemistry (China)
- Shanghai Customs, China, Animal, Plant and Food Inspection and Quarantine Technical Center (China)
- Shanghai Municipal Center For Disease Control and Prevention (China)
- Metrological and Testing Laboratory, University of Chemistry and Technology Prague (organizer, EU)

Tea is a difficult matrix to analyze...

Main constituents of tea leaves

Component	Content (% dry weight)	
Polyphenols flavanols	25–35 80% of total polyphenols	
Sacharides polysacharides	25 14–22	
Proteins	15	
Minerals	5	
Free aminoacids	4	
Chlorophyll	0.5	
CAFFEINE	2.5–5.5	

40% dry matter soluble in water (fermented tea)

Pesticide residues in ILC green tea

Test material - prepared and tested according to the ISO/IEC 17043:2010 - was provided by FERA Science Ltd (the participant in the EU-China-Safe project).

ILC Study - some method details (as reported):

27

Český institut pro akreditaci, o.p.s. Olšanská 54/3, 130 00 Praha 3

issues according to section 16 of Act No. 22/1997 Coll., on technical requirements for products, as amended

CERTIFICATE OF ACCREDITATION

No. 192/2019

Vysoká škola chemicko-technologická v Praze with registered office Technická 1905/5, 166 28 Praha 6, Dejvice, Company Registration No. 60461373

> to the Testing Laboratory No. 1316.2 Metrological and Testing laboratory

Scope of accreditation:

Chemical analysis of food including beverages and food supplements, food and pharmaceutical raw materials and products, feedstuffs, chemical preparations, biological materials of human, plant and animal origin, environmental components and forensis samples including addictive substances to the extent as specified in the appendix to this Certificate.

This Certificate of Accreditation is a proof of Accreditation issued on the basis of assessment of fulfillment of the accreditation criteria in accordance with

ČSN EN ISO/IEC 17025:2018

In its activities performed within the scope and for the period of validity of this Certificate, the Body is entitled to refer to this Certificate, provided that the accreditation or is not suspected and the Body meets the specified accreditation requirements in accordance with the relevant regulations applicable to the activity of an accredited Conformity Assessment Body.

This Certificate of Accreditation replaces, to the full extent, Certificate No.: 202/2018 of 18. 4. 2018, or any administrative acts building upon it.

The Certificate of Accreditation is valid until: 29. 4. 2024

ILC was organised by the ISO 17025 accredited testing laboratory of the **University of Chemistry and Technology Prague** (UCT Prague, CZ), in collaboration with Queens University Belfast (QUB, UK) and China National Center for Food Safety Risk Assessment, (CFSA, China) and supported by the FERA Science LtD (UK).

References:

- [1] ISO/IEC 17043:2010 "Conformity assessment General requirements for proficiency testing"
- [2] EA-4/21 INF:2018 Guidelines for the assessment of the appropriateness of small interlaboratory comparisons
- [3] General protocol for EU Proficiency Tests on Pesticide Residues in Food and Feed provided by European Reference Laboratories, 9th Ed., Nov 2019
- [4] ISO 13528: Statistical methods for use in proficiency testing by interlaboratory comparisons
- [5] Protocol for Proficiency testing Schemes (Part 1: Common Principles), version7, Jan 2021, FERA Science Ltd, Sand Hutton, York, UK.

ILC Study on Pesticide Residues in Food

Analyte	assigned value (X _a) [mg/kg]	number of scores z ≤ 2.0	total number of analytes	% z ≤ 2.0	number of False Negative
Chlorpyrifos (ethyl)	0.119	5	7	71 %	1
Dimethoate	0.068	7	7	100 %	-
Dinotefuran	0.056	7	7	100 %	-
Fenpropimorph	0.079	6	7	86 %	1
Imidacloprid	0.047	6	7	86 %	1
Malathion	0.107	6	7	86 %	-
Pirimiphos-methyl	0.138	6	7	86 %	-
Pyridaben	0.081	6	7	86 %	-
Tolfenpyrad	0.077	6	7	86 %	-

Total number of False Positive results: 3 Total number of False Negative results: 3 Table 1: Concentration of the pesticides (mg/kg) reported by laboratories and z-scores using Fit-For-Purpose RSD (relative standard deviation for proficiency = 25 %). MRRL: Minimum Required Reporting Level

Laboratory code	chlorpyrifos	es (FFP RSD (25%)	dimethoate	es (FFP RSD (25%)	dinitefuran	es (FFP RSD (25%)	e fenpropimorph	es (FFP RSD (25%)	imidacloprid	es (FFP RSD (25%)	malathion	es (FFP RSD (25%)	birimiphos-methyl	es (FFP RSD (25%)	pyridaben	es (FFP RSD (25%)	tolfenpyrad	es (FFP RSD (25%)
Assigned	0,050	COF	0,010	COF	0,020	COF	0,010	COF	0,010	COF	0,010	COF	0,010	COF	0,010	COF	0,010	COF
value	0,119	s z	0,068	s z	0,057	z s	0,079	s z	0,047	s z	0,107	s z	0,138	s z	0,081	s z	0,077	s z
LAB 10	0,131	0,41	0,072	0,24	0,050	-0,47	0,066	-0,63	0,045	-0,16	0,112	0,19	0,146	0,22	0,088	0,31	0,084	0,37
LAB 11	0,182	2,12	0,084	0,94	0,055	-0,11	0,106	1,40	0,049	0,21	0,141	1,28	0,191	1,54	0,107	1,27	0,115	1,97
LAB 12	0,140	0,71	0,068	-0,02	0,042	-1,05	0,080	0,07	0,042	-0,42	0,109	0,08	0,171	0,96	0,084	0,12	0,072	-0,25
LAB 13	0,134	0,49	0,071	0,19	0,050	-0,46	0,078	-0,02	0,040	-0,55	0,107	0,01	0,171	0,95	0,089	0,40	0,072	-0,22
LAB 14	0,141	0,74	0,073	0,31	0,065	0,61	0,089	0,52	0,045	-0,17	0,120	0,49	0,147	0,26	0,088	0,34	0,085	0,41
LAB 15	FN	FN	0,050	-1,05	0,060	0,23	FN	FN	FN	FN	0,050	-2,13	0,023	-3,33	0,020	-3,01	0,210	6,95
LAB 16	0,122	0,10	0,057	-0,64	0,044	-0,90	0,079	0,01	0,043	-0,31	0,108	0,02	0,141	0,09	0,086	0,24	0,084	0,35

False positive:

False negative:

LAB 14 fenpropathrin LAB 15 cyanazine, pirimicarb

LAB 15 chlorpyrifos, fenpropimorph, imidacloprid

ILC Study – some method details (as reported):

Chromatographic column used

Lab 10:	Acclaim RSLC 120 C18 (150 x 2.1 mm), 2.2 μm
Lab 11:	not specified
Lab 12:	Accucore aQ (150 x 2.1 mm), 2.7 µm; Thermo Scientific, Phenomenex (USA)
Lab 13:	Poroshell 120 EC-C18 (150 x 3.0 mm), 2.7 μm
Labs 14, 15, 16:	Waters ACQUITY UPLC HSS T3 column (100 x 2.1 mm),1.7 μm

Mass spectrometry

Labs 13, 14, 15, 16:	MS/MS Triple Quadrupole
Labs 11, 12:	High Resolution MS (Q-)Orbitrap
Lab 10:	High Resolution MS

Calibration / quantitation:

Labs 10, 13, 15, 16:matrix-matched calibrationLabs 11, 12:standard addition

Authentication of organic crops

Challenge: bio-wines authentication

Bacgreound of study: Growing popularity of 'bio-wines' has raise a demand for comntrol of compliance of organic farming practices usewd in grapes production (Commission Regulation 889/2008).

PROBLEM: occurrence of unauthorized pesticide residues close to 0.01 mg/kg in 'organic' grapes found by Control Authority, however, how to interpret it?

 Accidental contamination e.g. through atmospheric transport or
 Illegal use of pesticide preparations

Biotransformation of pesticides in plants

Sources employed for Database of pesticide metabolites construction

JMPR documents, EFSa opinions, Pesticide manual, scientific literature..

HRMS/MS screening and confirmation Accurate mass (± 5 ppm), isotope profile

Interpretation of MS/MS fragments

- Diagnostic fragments
- Fragments complying to parent molecule
- Fragments characterizing metabolic transformation
- Neutral losses

Example of difficult decision: is the wine organic? Pesticide metabolites as markers!

Metabolites of fenhexamid in grapes

 EIC Fenhexamid (*m/z* 302.0709) and metabolites Fen-OH (*m/z* 318.0658), Fen-OH-glycoside (*m/z* 480.1187) and Fen-dechloro (*m/z* 268.1099)

Metabolites of penconazole in grapes

EIC Penconazole (m/z 284.0721), penconazole-hydroxy (m/z 300.0665) and penconazole-hydroxy glycoside (m/z 462.1176)

UCT PRAGUE

ACS award: article of the month

2019, 67, 22m 6102 - 6115

Can Occurrence of Pesticide Metabolites Detected in Crops Provide the Evidence on Illegal Practices in Organic Farming?

Schusterova D, Suchanova M, Pulkrabova J, Koourek V, Hajslova J

Current challenge: Screening tools based on smartphone

The FoodSmartphone vision

- Less paperwork
- Less transport
- Less storage
- More data

Can even citizens be involved??

World's cheapest smartphone, costing under £3, begins shipping next week

New approach based on an old principle

NEUROTOXIC

Organophosphates and carbamates inhibition potency

P=S in-vitro activation

Activation is necessary to reveal the inhibitory potency !!!

P=S/P=O in-vitro inhibitory potency

Compound	AChE IC ₅₀ (μΜ, n=9)	BChE IC ₅₀ (μΜ, n=9)
chlorpyrifos	420 (298 - 594)	57 (41 - 79)
parathion	294 (220 - 305)	2353 (2200 - 2450)
malathion	2356 (2157 - 2456)	362 (295 - 386)
hlorpyrifos- oxon	0.093 (0.073 - 0.12)	0.0025 (0.0022 - 0.0030)
paraoxon	0.10 (0.085 - 0.19)	4.3 (3.8 - 5.2)
malaoxon	13.73 (8.129 - 23.18)	1.1 (0.54 - 2.3)

Paper-on-a-chip concept

LINKÖPING LINIVERSITY

Enzyme strips integrated to a 3D-printed chip

How does it work?

Samples and reagents were put in the plastic tubes, which can be used as a finger-pump

Ambient light elimination using a smartphone-reader

- Custom made 3D-printed coupler
- Elimination of any ambient light interference
- Camera flash constantly on to have a specific light source

Chlorpyrifos – oxon, calibration curve, apples

Sample preparation

- 1. QuEChERS extraction with d-SPE clean-up,
- 2. evaporation under N₂
- 3. reconstitution in PBS
- 4. Enzymatic paper-on-a-chip assay

0.01 - 10 mg/kg (n=6 calib. points)

Color intensity measurement using a smartphone

- Incubation with an inhibitor (NO color)
- Substrate addition (color development)
- Videos processed by in-house app

Principle: the app finds the max color intensity of the blank sample and compares it with the tested sample

Numerical data enabling semi-quantitative results using calibration curve

